- Minimum element in the Binary Search Tree is the left most element.
- Maximum element in the Binary Search Tree is the right most element.
- See below Working Process.
Working Process for Min-Element Searching
- Here we are traversing the left sub-tree and traverse till left most element of BST.
- Left most element will be Minimum Element.
- So 20 is the Min-Element of given BST.
Working Process for Max-Element Searching
- Here we are traversing the right sub-tree and traverse till right most element of BST.
- Right most element will be Maximum Element.
- So 120 is the Max-Element of given BST.
Code Implementation for Min-Element Searching
void MinElementSearchInBST(BSTNode* root)
{
if (root == NULL)
{
printf("Sorry Binary Search Tree is Empty...");
return;
}
while (root->left!=NULL)
{
root = root->left;
}
printf("Minimum Element is : ",root->data);
}
Code Implementation for Max-Element Searching
void MaxElementSearchInBST(BSTNode* root)
{
if (root == NULL)
{
printf("Sorry Binary Search Tree is Empty...");
return;
}
while (root->right!=NULL)
{
root = root->right;
}
printf("Maximum Element is : ",root->data);
}
Time & Space Complexity
- For Min-Element Search :
1 -: Time Complexity will be O(n).
2 -: Space Complexity will be O(1). - For Max-Element Search :
1 -: Time Complexity will be O(n).
2 -: Space Complexity will be O(1).